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Digital State-Variable Filters
Helmut Keller

This paper provides an overview over all commonly used first- and second-order analog filter types and 
describes, step by step, the derivation of corresponding digital state-variable filters. The derived digital 
state-variable  filters  are  bilinear-transformed  versions  of  the  analog  filters.  They  are  suitable  for 
modulation of the filter parameters. Possible applications are e.g. wah-wah effects, emulations of voltage 
controlled filters of analog synthesizers, or dynamic equalizers.

1. Introduction
Analog filters and digital infinite impulse response (IIR) filters are close “cousins”. Filters with 
arbitrary order can be composed as a series connection of second-order sub-filters. Four different 
direct forms are commonly used for the digital filters. The digital filters can be derived from analog 
prototype filters via the bilinear transformation. The relationship between the analog and the digital 
filter coefficients is, however, rather complicated. If the filter parameters need to change over time, 
the digital direct forms are not suitable whereas an analog state-variable filter is. The digital state-
variable filters derived in this paper are suitable for time-varying filter parameters, as well, while 
they are still bilinear transformed versions of the original analog filters. However, they have nearly 
the same filter coefficients as the original analog filters. A disadvantage of the digital state-variable 
filters is their increased resource consumption compared to the direct forms. Thus, the direct forms 
are still the first choice for static digital filters.

2. First-order analog filter
The complex transfer function H(f) of a first-order analog filter is defined in equation (1). In this 
paper, f is the frequency of interest, f0 is the filter pole-frequency, and j is the square root of minus 
one.

H ( f )=
b1+b0

j f
f 0

1+ j f
f 0

(1)

Table 1 shows the coefficients of common first-order filter types.
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Table 1: Coefficients of common first-order filter types

Type f0 b0 b1

Flat > 0 Hz 1 1

Lowpass fc 0 1

Highpass fc 1 0

Allpass 1
π τ d

1 -1

Low-shelf f s

A
1 A²

High-shelf A f s A² 1

The parameter fc is the cutoff frequency of the low- and highpass filters.

The parameter τd is the group delay of the allpass filter at frequencies much lower than f0. 

The parameter A of the low-shelf filter is the gain at the center frequency fs of its slope. The gain at 
frequencies much lower than fs is A².

The parameter A of the high-shelf filter is the gain at the center frequency fs of its slope. The gain at 
frequencies much higher than fs is A².

There are other possible definitions of first-order shelf filters too. The definitions used in this paper 
seem to be the most reasonable ones and are popular in modern audio applications.

3. Second-order analog filter
The complex transfer function of a second-order analog filter is defined as:

H ( f )=
b2+b1

1
Q

j f
f 0

−b0
f 2

f 0
2

1+ 1
Q

j f
f 0

−
f 2

f 0
2

(2)

Table 2 shows the coefficients of common second-order filter types.
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Table 2: Coefficients of common-second order filter types

Type fo Q b0 b1 b2

Flat > 0 Hz > 0 1 1 1

Lowpass fc Qc 0 0 1

Highpass fc Qc 1 0 0

Bandpass fc Qc 0 1 0

Notch fc Qc 1 0 1

Allpass 1
π Qc τd

Qc 1 -1 1

Peak equalizer fc A Qc 1 A2 1

High-shelf f s

√A

1

√(A+ 1
A)( 1

L
−1)+2

A2 A 1

Low-shelf √A f s
1

√(A+ 1
A)( 1

L
−1)+2

1 A A2

Tone stack fc ≤ 0.5 T M B

Eliptic lowpass fc Qc f c
2

f n
2

0 1

Eliptic highpass fc Qc 1 0 f n
2

f c
2

Lowpass with
 20 dB / decade slope

fc Qc 0 Qc 1

Highpass with
20 dB / decade slope

fc Qc 1 Qc 0

The parameter fc is the cut off frequency of the low- or highpass filters and the center frequency of  
the bandpass, notch, peak equalizer and tone stack filters.

The parameter Qc is the quality factor of the filters.

The parameter  τd is the group delay of the allpass filter at frequencies much lower than  f0. The 

group delay of a second order analog allpass filter is optimal flat with Qc=1/√3.

The parameter A of the peak equalizer filter is the gain at fl and fh. Both frequencies are defined by 
equations 5 and 6. The gain at fc is A².

The parameter A of the low-shelf filter is the gain at the center frequency fs of its slope. The gain at 
frequencies much lower than fc is is A².
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The parameter A of the high-shelf filter is the gain at the center frequency fs of its slope. The gain at 
frequencies much higher than fs is A².

The parameter L controls the steepness of the shelf filters slopes. The filters degrade to first-order 
shelf filters with L = 0.5.

The parameters B, M and T of the tone stack filter are the gains at frequencies much lower than, in 
the range of and much higher than fc. 

The parameter fn of the eliptic filters is their notch frequency.

The low- and highpass filters with a 20 dB / decade slope degrade to first-order low- and highpass 
filters with Qc = 0.5.

There  are  other  possible  definitions  of  second-order  shelf  and  peak  equalizer  filters  too.  The 
definitions used in this paper seem to be the most reasonable ones and are quite popular in modern 
audio applications.

4. Relations between bandwidth and quality factor
The bandwidth bw of a band pass, notch or peak equalizer filter is defined as:

bw=
f c

Qc

=f h − f l (3)

with

f c=√ f h f l (4)

with

f l=
√1+4Qc

2 −1

2 Qc

f c (5)

and

f h=
√1+4 Qc

2+1

2Qc

f c (6)

The logarithmic bandwidth lbw in fractions of tenths of a decade is defined as:

lbw= 10
ln (10)

ln( f h

f l
) (7)

With a given lbw we obtain:

Qc=
1

2 sinh( ln (10)
20

lbw) (8)
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5. Combination of two first-order analog filters
The series connection of a first first-order analog filter with coefficients f10, b10 and b11 and a second 
first-order analog filter  with coefficients  f20,  b20  and  b21 results  in a  second-order filter  with the 
coefficients of table 3.

 Table 3: Coefficients for two first-order filters

fo Q b0 b1 b2

√ f 10 f 20
f 0

f 10+f 20

b10 b20 b11 f 20+b21 f 10

f 10+f 20

b11 b21

6. Analog filters of arbitrary order
Every analog filter of even order N can be composed as a series connection of N / 2 second-order 
filters. Every analog filter of odd order  N can be composed as a series connection of (N + 1) / 2 
second-order filters if an additional flat first-order filter is inserted into the filter chain. Setting f20 of 
the additional flat filter to f10 of the necessary first-order filter, we obtain the coefficients of table 4.

Table 4: Coefficients for a single first-order filter

fo Q b0 b1 b2

f 10 0.5 b10 b11+1

2

b11

Thus we can compose every analog filter as a series connection of second-order analog filters. 

7. Bilinear transformation and frequency warping
We obtain a bilinear-transformed digital IIR filter with the sample period T from the analog filter 
with the following substitution:

j f ⇒ 1
πT

z −1
z+1

(9)

with

z=e j2 π fT (10)

The frequency fa of the analog filter relates to the frequency fd of the bilinear-transformed digital 
filter as shown in equation 11.                                                                                                                 

f a=
tan (π T f d)
      π T

(11)

The magnitude and the phase of the bilinear-transformed digital filter are identical to the original 
analog filter except of the nonlinear warping of the frequency axis.
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In order to project a certain calculated frequency fx of the analog filter to the same frequency in the 
digital filter, the analog filter must be designed with the prewarped calculated frequency fwx. This 
approach requires fx < 0.5 / T: 

f wx=
tan (πT f x)
      π T

(12)

8. Preserving bandwidth                                                                   
The  bandwidth  of  a  second-order  bandpass,  notch,  or  peak  equalizer  filter  is  approximately 
preserved in the bilinear-transformed digital filter by substituting the calculated quality  Qc of the 
analog filter with the prewarped calculated quality Qwc:

Qwc=
1

2sinh(     π T f c

sin (2 π T f c)
ln( √1+4 Qc

2+1

√1+4 Qc
2−1)) (13)

Alternatively, the band confines fl  and fh – and thus also the bandwidth – are exactly preserved if fl 

and fh are substituted with fwl and fwh. In this case the center frequency fc is preserved approximately 
only. This approach requires fh < 0.5 / T :

f wl=
tan (π T f l )
      π T

(14)

f wh=
tan (πT f h)
      π T

(15)

f wc=√ f wl f wh (16)

Qwc=
f wc

f wh − f wl

(17)

9. Digital optimally flat group-delay filters 
The phase and group delay of a bilinear-transformed filter are transformed differently compared to 
magnitude and phase. Therefore a bilinear-transformed analog optimal flat group-delay filter does 
not necessarily result in a digital optimally flat group-delay filter. Digital filters with orders higher  
than two must  be optimized for  an optimally flat  group-delay in  the digital  frequency domain 
directly (Thiran allpass filters). First-order filters do not need any optimization because they have 
always  optimally  flat  group  delay.  Digital  second-order  optimally  flat  group-delay  filters  are 
obtained by the bilinear transformation of an analog second-order filter with the quality factor Qc 

from equation 19.

Qc=√ 1−( T
τd
)

2

3

(19)
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The group delay of analog optimally flat group-delay allpass filters is τd at frequencies much lower 
than f0, and decreases for frequencies much higher than f0.

The group delay of digital optimally flat group-delay allpass filters of order  N behaves similar if 
τd<N T . The group delay is, however, constant for all frequencies if τd=N T . The group delay even 

increases  at  high  frequencies  if  τd<N T .  The  group  delay  at  low  frequencies  must  satisfy 
τd>(N −1)T .

10. Analog second-order state-variable filter

The  analog  second-order  state-variable  filter  uses  two  integrators  with  the  following  complex 
transfer function:

H ( f )=
f 0

j f
(20)

The integrators have unity gain at f0. Fig. 1 shows a possible realization of the analog second-order 
state-variable filter.

Fig. 1. Analog second-order state-variable filter 
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11. Digital second-order state-variable filter

A substitution of the analog integrators in the analog state-variable filter by digital integrators as 
defined in equation 21 would result in the bilinear-transformed digital state-variable filter because 
equation 21 is just an rearrangement of equation 9.

f 0

j f
⇒ k

z+1
z −1

(21)

with

k=π f 0 T (22)

However, this substitution would lead to delay free feedback loops and thus is not realizable. Using 
the transposed direct form II of the digital integrators it is possible to avoid the delay free feedback 
loops.  For  this  the  feedback  signals  are  tapped  at  the  sample  delay  outputs  instead  of  at  the 
integrator outputs. This modification requires however some additional modification in digital filter. 
Fig. 2 shows a possible realization of the bilinear-transformed digital second-order state-variable 
filter.

Fig. 2. Digital second-order state-variable filter 

Prewarping can be applied if desired by using the f0 or Q values of the prewarped analog filter.
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The following pseudo code describes the calculation of the bilinear-transformed digital second-
order state-variable filter step by step:

 Initialize the two filter states s1 and s2 with zeros

 Initialize the filter parameters f0, Q, b0, b1 and b2 with default values

 Initialize T = T / s according to the sample rate

 Initialize  pit = 4 * atan(1) * T

 Read the actual filter parameters in real time:

f0 = f0 / Hz
Q = Q
b0 = b0

b1 = b1

b2 = b2                                                     

 Calculate internal filter parameters at initialization and if f0, Q or b1 have changed:

k = pit * f0
kq = 1 / Q
kdiv = 1 / ( 1+ k * (kq  + k))
kf = kq + k
kb1= kq * b1

 Calculate the output sample y for each input sample x:                               

hp = kdiv * (x – kf * s1 – s2)
aux = k * hp
bp = aux + s1
s1 = aux + bp
aux = k * bp
lp = aux + s2
s2 = aux + lp
y = b0 * hp + kb1 * bp + b2 * lp
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12. Digital first-order state-variable filter

A first-order digital state-variable filter is not necessary because it was shown that it can be realized 
by a second-order digital state-variable filter. However, in order to reduce memory and performance 
requirements, a first-order digital state-variable filter makes sense, after all. The following figure 
shows a possible realization of the bilinear-transformed digital first-order state-variable filter: 

 

 

Fig. 3. Digital first-order state-variable filter 

Prewarping can be applied if desired by using f0 of the prewarped analog filter.
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The following pseudo code describes the calculation of the bilinear-transformed digital first-order 
variable filter step by step:

 Initialize the filter state s1 with zeros

 Initialize the filter parameters f0, b0 and b1 with default values

 Initialize T = T / s according to the sample rate

 Initialize  pit = 4 * atan(1) * T

 Read the actual filter parameters in real time:

f0 = f0 / Hz
b0 = b0

b1 = b1                                              

 Calculate internal filter parameters at initialization and if f0 has changed:

k = pit * f0
kdiv = 1 / ( 1+ k )

 Calculate the output sample y for each input sample x:                               

hp = kdiv * (x – s1)
aux = k * hp
lp = aux + s1
s1 = aux + lp
y = b0 * hp + b1 * lp  
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13. Filter parameter smoothing
So far we know how to calculate the filter even if the filter parameters would change with the audio  
sample rate. In many applications filter parameters do not change as fast.  The control data are 
typically received through a lower-priority thread at much lower rates. A typical example is the 
control of the resonance frequency of a second-order lowpass filter for a wah-wah-like effect by a  
MIDI foot controller. As a consequence the control data could lead to big leaps in the parameter 
values, possibly resulting in annoying audible transients. Here, the ideal solution would be to apply 
a first-order lowpass filter with a time constant τ smooth of some 10 ms between the control data and 
the  filter  parameter  calculation with the  audio  sample rate.  However,  there  is  a  more  efficient 
approach to achieve similar results: 

The filter parameters are only updated if the control data has changed. A first-order lowpass filter is 
inserted between all slowly updated filter parameters pxu and the filter parameters px the latter being 
actually used in the filter and updated with the audio sample rate.

The following pseudo code describes the calculation of the desired smoothing low pass filters step 
by step. The selected low pass structure requires minimal resources: 

 Initialize all px and pxu with the default values of px

 Initialize all smoothing filter states sx with px                                                                            

 Initialize T = T / s according to the sample rate

 Initialize  tau =  τ smooth / s according to the desired smoothing time constant

 Initialize ksmooth =  T / tau 

 Calculate pxu if new control data is available 

 Calculate all px with the audio sample rate:

px = ksmooth * (pxu - sx)  + sx
sx = px

For the digital second-order state-variable filter the pseudo code filter parameters b0, kb1, b1, k,  
kdiv and kf need to be smoothed. For the digital first-order state-variable filter the pseudo code 
filter  parameters  b0,  b1,  k  and  kdiv  need  to  be  smoothed.  Note  that  this  effective  smoothing 
approach could lead in theory to temporarily unstable filters. In practice this is, however, not an 
issue. This effective smoothing approach could be applied on the coefficients of the direct forms of 
the digital filters, as well. However, in this case temporarily unstable filters are likely to be an issue, 
and  the  calculation  of  the  filter-coefficient  updates  would  require  much  more  computational 
resources. The direct forms of digital filters are therefore not suitable for time varying filters.
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14. Summary
Digital second-order state-variable filters can be easily derived from the analog filter models. The 
substitution of the analog integrators by the digital  integrators results by design in the bilinear-
transformed  digital  filter.  Three  of  the  analog  filter  parameters,  namely  b0,  b1 and  b2,  remain 
identical in both the digital and the analog filter. The analog filter parameters f0 and Q may require 
some prewarping due to the frequency warping of the bilinear transformation.  Some additional 
simple corrections in the feedback loop of the digital filter are also necessary. The digital filter  
parameters  derived  from  f0 and  Q  are  thus  very  close  but  not  identical  to  the  analog  filter 
parameters. They could be calculated with moderate computational cost even at the audio sample 
rate. Since filter-parameter smoothing is required in most applications anyway, the filter parameters 
need to be updated even much less often. An effective pragmatic approach for the filter parameter 
smoothing has been proposed.

The embedding of first-order filters in second-order filters has been described. Alternatively, the 
newly introduced digital first-order state-variable filter could be used.

The bilinear transformation is not suitable for optimally flat group-delay filters of orders higher than 
one. However, for second-order filters an appropriate prewarping of the quality factor has been 
introduced.
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